547 research outputs found

    Critical behavior of O(2)xO(N) symmetric models

    Full text link
    We investigate the controversial issue of the existence of universality classes describing critical phenomena in three-dimensional statistical systems characterized by a matrix order parameter with symmetry O(2)xO(N) and symmetry-breaking pattern O(2)xO(N) -> O(2)xO(N-2). Physical realizations of these systems are, for example, frustrated spin models with noncollinear order. Starting from the field-theoretical Landau-Ginzburg-Wilson Hamiltonian, we consider the massless critical theory and the minimal-subtraction scheme without epsilon expansion. The three-dimensional analysis of the corresponding five-loop expansions shows the existence of a stable fixed point for N=2 and N=3, confirming recent field-theoretical results based on a six-loop expansion in the alternative zero-momentum renormalization scheme defined in the massive disordered phase. In addition, we report numerical Monte Carlo simulations of a class of three-dimensional O(2)xO(2)-symmetric lattice models. The results provide further support to the existence of the O(2)xO(2) universality class predicted by the field-theoretical analyses.Comment: 45 pages, 20 figs, some additions, Phys.Rev.B in pres

    Exploiting gauge and constraint freedom in hyperbolic formulations of Einstein's equations

    Full text link
    We present new many-parameter families of strongly and symmetric hyperbolic formulations of Einstein's equations that include quite general algebraic and live gauge conditions for the lapse. The first system that we present has 30 variables and incorporates an algebraic relationship between the lapse and the determinant of the three metric that generalizes the densitized lapse prescription. The second system has 34 variables and uses a family of live gauges that generalizes the Bona-Masso slicing conditions. These systems have free parameters even after imposing hyperbolicity and are expected to be useful in 3D numerical evolutions. We discuss under what conditions there are no superluminal characteristic speeds

    Entanglement entropy of two dimensional systems and holography

    Get PDF
    In this note a new method for computing the entanglement entropy of a CFT holographically is explored. It consists of finding a bulk background with a boundary metric that has the conical singularities needed to compute the entanglement entropy in the usual QFT definition. An explicit calculation is presented for d=2.Comment: 20 pages, 1 figure: v2 typos fixed, references and comments adde

    Well-Posed Initial-Boundary Evolution in General Relativity

    Full text link
    Maximally dissipative boundary conditions are applied to the initial-boundary value problem for Einstein's equations in harmonic coordinates to show that it is well-posed for homogeneous boundary data and for boundary data that is small in a linearized sense. The method is implemented as a nonlinear evolution code which satisfies convergence tests in the nonlinear regime and is robustly stable in the weak field regime. A linearized version has been stably matched to a characteristic code to compute the gravitational waveform radiated to infinity.Comment: 5 pages, 6 figures; added another convergence plot to Fig. 2 + minor change

    AdS/CFT and Strong Subadditivity of Entanglement Entropy

    Full text link
    Recently, a holographic computation of the entanglement entropy in conformal field theories has been proposed via the AdS/CFT correspondence. One of the most important properties of the entanglement entropy is known as the strong subadditivity. This requires that the entanglement entropy should be a concave function with respect to geometric parameters. It is a non-trivial check on the proposal to see if this property is indeed satisfied by the entropy computed holographically. In this paper we examine several examples which are defined by annuli or cusps, and confirm the strong subadditivity via direct calculations. Furthermore, we conjecture that Wilson loop correlators in strongly coupled gauge theories satisfy the same relation. We also discuss the relation between the holographic entanglement entropy and the Bousso bound.Comment: 29 pages, harvmac, 7 figures, references adde

    Chiral phase transitions: focus driven critical behavior in systems with planar and vector ordering

    Full text link
    The fixed point that governs the critical behavior of magnets described by the NN-vector chiral model under the physical values of NN (N=2,3N =2, 3) is shown to be a stable focus both in two and three dimensions. Robust evidence in favor of this conclusion is obtained within the five-loop and six-loop renormalization-group analysis in fixed dimension. The spiral-like approach of the chiral fixed point results in unusual crossover and near-critical regimes that may imitate varying critical exponents seen in physical and computer experiments.Comment: 4 pages, 5 figures. Discussion enlarge

    Multimodal long noncoding RNA interaction networks: Control panels for cell fate specification

    Get PDF
    Lineage specification in early development is the basis for the exquisitely precise body plan of multicellular organisms. It is therefore critical to understand cell fate decisions in early development. Moreover, for regenerative medicine, the accurate specification of cell types to replace damaged/diseased tissue is strongly dependent on identifying determinants of cell identity. Long noncoding RNAs (lncRNAs) have been shown to regulate cellular plasticity, including pluripotency establishment and maintenance, differentiation and development, yet broad phenotypic analysis and the mechanistic basis of their function remains lacking. As components of molecular condensates, lncRNAs interact with almost all classes of cellular biomolecules, including proteins, DNA, mRNAs, and microRNAs. With functions ranging from controlling alternative splicing of mRNAs, to providing scaffolding upon which chromatin modifiers are assembled, it is clear that at least a subset of lncRNAs are far from the transcriptional noise they were once deemed. This review highlights the diversity of lncRNA interactions in the context of cell fate specification, and provides examples of each type of interaction in relevant developmental contexts. Also highlighted are experimental and computational approaches to study lncRNAs

    Entanglement and Nonunitary Evolution

    Get PDF
    We consider a collapsing relativistic spherical shell for a free quantum field. Once the center of the wavefunction of the shell passes a certain radius R, the degrees of freedom inside R are traced over. We show that an observer outside this region will determine that the evolution of the system is nonunitary. We argue that this phenomenon is generic to entangled systems, and discuss a possible relation to black hole physics.Comment: 14 pages, 1 figure; Added a clarification regarding the relation with black hole physic

    SWI/SNF remains localized to chromatin in the presence of SCHLAP1

    Get PDF
    SCHLAP1 is a long noncoding RNA that is reported to function by depleting the SWI/SNF complex from the genome. We investigated the hypothesis that SCHLAP1 affects only specific compositions of SWI/SNF. Using several assays, we found that SWI/SNF is not depleted from the genome by SCHLAP1 and that SWI/SNF is associated with many coding and noncoding RNAs, suggesting that SCHLAP1 may function in a SWI/SNF-independent manner

    On String Theory Duals of Lifshitz-like Fixed Points

    Full text link
    We present type IIB supergravity solutions which are expected to be dual to certain Lifshitz-like fixed points with anisotropic scale invariance. They are expected to describe a class of D3-D7 systems and their finite temperature generalizations are straightforward. We show that there exist solutions that interpolate between these anisotropic solutions in the IR and the standard AdS5 solutions in the UV. This predicts anisotropic RG flows from familiar isotropic fixed points to anisotropic ones. In our case, these RG flows are triggered by a non-zero theta-angle in Yang-Mills theories that linearly depends on one of the spatial coordinates. We study the perturbations around these backgrounds and discuss the possibility of instability. We also holographically compute their thermal entropies, viscosities, and entanglement entropies.Comment: 47 pages, 4 figure
    • …
    corecore